Five-value rich lines, Borel directions and uniqueness of meromorphic functions
نویسنده
چکیده مقاله:
For a meromorphic function $f$ in the complex plane, we shall introduce the definition of five-value rich line of $f$, and study the uniqueness of meromorphic functions of finite order in an angular domain by involving the five-value rich line and Borel directions. Finally, the relationship between a five-value rich line and a Borel direction is discussed, that is, every Borel direction of $f$ is its five-value rich line, and the inverse statement holds when $f$ is of infinite order.
منابع مشابه
Uniqueness and value-sharing of meromorphic functions
Abstract. Concerning the uniqueness and sharing values of meromorphic functions, many results about meromorphic functions that share more than or equal to two values have been obtained. In this paper, we shall study meromorphic functions that share only one value, and prove the following result: For n ≥ 11 and two meromorphic functions f(z) and g(z) , if ff ′ and gg share the same nonzero and f...
متن کاملOn uniqueness of meromorphic functions sharing five small functions on annuli
The purpose of this article is to investigate the uniqueness of meromorphic functions sharing five small functions on annuli.
متن کاملUniqueness of meromorphic functions sharing one value
In this paper, we discuss the problem of meromorphic functions sharing one value and obtain two theorems which improve a result of C.C.Yang and X.H.Hua.
متن کاملUniqueness And Value Distribution Of Differences Of Meromorphic Functions∗
The purpose of the paper is to study the uniqueness problems of difference polynomials of meromorphic functions sharing a small function. The results of the paper improve and generalize the recent results due to Liu, et al. [11] and Liu, et al. [12].
متن کاملUniqueness of Meromorphic Functions∗
In this paper, Hinkkanen’s problem (1984) is completely solved, i.e., it is shown that any meromorphic function f is determined by its zeros and poles and the zeros of f (j) for j = 1, 2, 3, 4. To appear in J. Canad. Math. / Canad. J. Math.
متن کاملUniqueness and value distribution for q-shifts of meromorphic functions∗
In this paper, we deal with value distribution for q-shift polynomials of transcendental meromorphic functions with zero order and obtain some results which improve the previous theorems given by Liu and Qi [18]. In addition, we investigate value sharing for q-shift polynomials of transcendental entire functions with zero order and obtain some results which extend the recent theorem given by Li...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 43 شماره 5
صفحات 1467- 1478
تاریخ انتشار 2017-10-31
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023